黄绿色荧光粉 CaWO4: Pr3+ 的发光性质与晶体场分析

冯文林^{1,2} 刘青松¹ 张伟杰¹ 吕立康¹ 崔 跃¹

(¹重庆理工大学光电信息学院应用物理系,重庆 400054) ²中国科学院国际材料物理中心,辽宁 沈阳 110016

摘要 采用共沉淀法成功制备了新型黄绿色荧光粉 $Ca_{1-x}WO_4: xPr^{3+}$ (摩尔分数 x=0.1%, 0.3%, 0.5%, 0.7%)。通过 X 射线衍射(XRD)、扫描电镜(SEM)和荧光光谱等测试手段进行了结构、形貌和光致发光研究。结果表明:黄绿色荧光粉 $CaWO_4: Pr^{3+}$ 具有四角白钨矿类结构,空间群为 $I4_1/a$,其表面形貌较规则、粉粒大小为 5~20 μ m。Ca $WO_4: Pr^{3+}$ 可被 487 nm 蓝光有效激发,其发射光谱由一系列锐谱组成,分别位于 530 nm($^{3}P_1 \rightarrow ^{3}H_5$)、547 nm、555 nm($^{3}P_0 \rightarrow ^{3}H_5$)、602 nm($^{1}D_2 \rightarrow ^{3}H_4$)、618 nm、637 nm ($^{3}P_0 \rightarrow ^{3}H_6$)和 648 nm($^{3}P_0 \rightarrow ^{3}F_2$)。当摩尔分数 达到0.5%时样品光致发光最强。样品的色坐标为(x=0.39, y=0.55),表明所发光为黄绿光。为了更好的理解 Ca $WO_4: Pr^{3+}$ 的荧光谱,建立了包括 4f² 电子组态的自由离子和晶体场相互作用的 91×91 阶能量哈密顿量矩阵,在 理论上合理地解释了 Pr^{3+} 离子在 Ca WO_4 晶体中四角(S_4)Ca²⁺ 晶位的光谱数据,所得理论值与实验结果吻合 较好。

关键词 发光材料;光致发光;晶体场;CaWO4:Pr³⁺
 中图分类号 O482.31
 文献标识码 A doi: 10.3788/AOS201434.0416004

Luminescent Properties and Crystal-Field Analysis for Novel Yellow-Green Phosphor CaWO₄:Pr³⁺

Feng Wenlin^{1,2} Liu Qingsong¹ Zhang Weijie¹ Lü Likang¹ Cui Yue¹

¹Department of Applied Physics, School of Optoelectronic Information,

Chongqing University of Technology, Chongqing 400054, China

² International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China

Abstract Pr^{3^+} -doped cadmium tungstate yellow-green phosphors $Ca_{1-x}WO_4 : xPr^{3^+}$ (mole fraction x = 0.1%, 0.3%, 0. 5%, 0. 7%) are successfully synthesized by the co-precipitation method. The crystal structure, morphology and photoluminescence (PL) properties are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectrometer. The results show that $CaWO_4 : Pr^{3^+}$ has a tetragonal sheelite structure with space group $I4_1/a$. The SEM image shows that the grains are irregular with sizes ranging from 5 to 20 μ m. The emission spectrum of the $CaWO_4 : Pr^{3^+}$ phosphor is characterized, its peaks locate at 530, 547,555, 602, 618, 637 and 648nm corresponding to the ${}^{3}P_1 \rightarrow {}^{3}H_5$, ${}^{3}P_0 \rightarrow {}^{3}H_5$, ${}^{1}D_2 \rightarrow {}^{3}H_4$, ${}^{3}P_0 \rightarrow {}^{3}H_6$, ${}^{3}P_0 \rightarrow {}^{3}H_6$ and ${}^{3}P_0 \rightarrow {}^{3}F_2$ transitions of Pr^{3^+} , respectively. The strongest one appears at 648 nm when is excited by 487 nm which matches well with blue chips. The optimized concentration of Pr^{3^+} is 0.5% for the highest PL emission intensity. In addition, to understand the fluorescent spectra of as-synthesized phosphors, a complete 91×91 energy matrix is built by an effective operator Hamiltonian including free ion and crystal field interactions. The fluorescent spectra for Pr^{3^+} ion at the tetragonal (S₄) Ca²⁺ site of CaWO₄ crystal are calculated from a full diagonalization (of energy matrix) method. The fitting values are in good agreement with the experimental data.

Key words luminescent materials; photoluminescence; crystal field; CaWO₄:Pr³⁺

OCIS codes 160.2540; 160.4760; 300.2530

收稿日期: 2013-10-21; 收到修改稿日期: 2013-11-19

基金项目:国家自然科学基金(11104366)、教育部重点科技项目(212139)、重庆市自然科学基金(CSTC2011jjA50015) 作者简介:冯文林(1976—),男,博士,教授,主要从事光电材料与器件方面的研究。E-mail: wenlinfeng@126.com

1 引 盲

由于低能耗、高效率、长寿命和无汞,白光发光 二极管(W-LEDs)将在下一代固体发光系统中广泛 应用[1-2]。传统的 W-LEDs 由 蓝 光 LED 和 掺杂 Ce³⁺ 的钇铝(镓镨)石榴石的黄色荧光粉封装而 成^[3-4],但是由于色补偿较低而导致色光偏冷。因 此,找到一种稳定的由近紫外或蓝光激发的新型荧 光粉成为一种迫切的任务。最近,一系列的荧光粉 研究见诸报道,包括钨酸盐 CaWO4:Eu3+ 红色荧光 粉^[5-6],硼酸盐LiSrBO₃:Eu^{3+[7]},Eu²⁺/Dy³⁺共掺 杂 SrSiO₃ 透明微晶玻璃^[8] 和 Eu³⁺ 单掺或 Tm³⁺/ Yb^{3+} 共掺杂的钼酸盐体系^[9-10] 等, CaWO₄: Pr³⁺ 的 块晶发光的压力影响已有研究[11],而李敏等[12]采用 高温固相法制备和研究了 Pr₂O₂ 对 CaWO₄ 发光性 能的影响。然而,目前还没有关于采用共沉淀法制 备 Pr³⁺掺杂 CaWO4 黄绿色荧光粉及其发光性质与 晶体场分析相关的研究报道。

钨酸钙(CaWO₄)晶体具有较高的能量分辨率 和低温光产额,所以在低温探测方面,CaWO₄ 晶体 被选作证实宇宙中存在弱相互作用的重粒子的目标 材料^[13-14]。同时,CaWO₄ 晶体是一种很好的发光 基质材料,目前常用在工业上的荧光灯和氖灯等。 因此研究 CaWO₄:Pr³⁺荧光粉的发光性质是一项很 有意义的工作。

本实验以 NH₃•H₂O 作为沉淀剂,采用顺滴方 式的化学共沉淀法,通过两步煅烧成功合成了 CaWO₄:Pr³⁺黄绿色荧光粉,研究不同 Pr³⁺掺杂量 下对 CaWO₄:Pr³⁺黄绿色荧光粉发光性能的影响, 同时对实验光谱数据进行指认,并采用晶体场理论 进行了合理地解释。

2 实 验

2.1 实验制备

采用共沉淀法制备 $Ca_{1-x}WO_4: xPr^{3+}$ (摩尔分数 x=0.1%, 0.3%, 0.5%, 0.7%) 黄绿色荧光 粉。将 原料 [氧化镨(Pr_2O_3)(AR)、钨酸钠 ($Na_2WO_4 \cdot 2H_2O$)(AR)、无水氯化钙($CaCl_2$) (AR)]按化学计量比(摩尔分数)称取,将 $CaCl_2$ 溶 于 50 mL 去离子水配成 $CaCl_2$ 溶液。将 Pr_2O_3 溶 于稀盐酸溶液中配成 $PrCl_3$ 溶液。将 $Na_2WO_4 \cdot$ 2 H_2O 溶于 50 mL 去离子水中配成 Na_2WO_4 溶液。 分别向 $CaCl_2$ 溶液、 $PrCl_3$ 溶液、 Na_2WO_4 溶液中滴 加适量 $NH_3 \cdot H_2O$ 或者 HCl 调节 pH 为中性。设 置磁力搅拌器恒温 60 °C,在磁力搅拌时向 Na₂WO₄ 溶液中缓慢滴加 CaCl₂ 溶液和 PrCl₃ 溶液,同时滴 加适量 NH₃·H₂O 调节 PH=8~9,恒温反应 1 h。 得到白色浑浊液。室温静置陈化 24 h后,倒掉上层 清液,将所得沉淀倒入过滤装置中,连接 SHZ-D(II) 循环水式真空泵进行洗涤抽滤,待滤液 pH=7,充分 水洗滤干后,将制备的样品装入坩埚后放入 ZK35 型 电热真空干燥箱中,100 °C干燥 2 h得到前驱体。对 干燥后的粉体研磨 1 h。研磨后,放入 SGM3817B 高 温箱式电阻炉中 800 °C预煅烧 2 h后,在 1000 °C煅烧 4 h得到 CaWO₄:Pr³⁺粉体。待完全冷却后取出充分 研磨后装入密封袋,做好标记。

2.2 样品测试

采用 X 射线衍射仪(XRD-6000 型,日本理学公 司 Dmax2200 型)测试样品的结构,对合成发光粉体 的物相进行测试分析,加速电压为 40 kV,管电流为 150 mA,辐射源为 Cu 靶 K。辐射。采用场发射扫 描电子显微镜(FE-SEM,HitachiSu-70 型)表征样 品形貌。用 RF-5301PC 荧光光谱仪分析样品的激发 光谱和发射光谱,150 W 氙灯为激发光源,激发波长 范围为 220~700 nm,扫描范围为 300~800 nm。

3 分析与讨论

3.1 XRD 分析

从图 1 可以看出,制备出的 $Ca_{1-x}WO_4: xPr^{3+}$ (x=0.1%, 0.3%, 0.5%和 0.7%)样品的 XRD 图 谱和 $CaWO_4$ 的标准图谱(PDF # 41-1431^[15])相比。 两图的标准谱峰基本相符,略有偏移,这是因为掺杂 的 Pr^{3+} 替代了 Ca^{2+} 的晶位,由于替代离子与基质离 子的半径、电量及电负性等不同而引起的轻微角度 偏移。根据 XRD 图谱可知,未有其他杂质峰观测

图 1 $Ca_{1-x}WO_4$: xPr^{3+} (x=0.1%, 0.3%, 0.5%, 0.7%)的 XRD 图谱

Fig. 1 XRD patterns of $Ca_{1-x}WO_4: xPr^{3+}$ (x=0.1%, 0.3%, 0.5%, 0.7%)

到,说明实验成功合成了空间群为 $I4_1/a$ 的四角白 钨矿类结构的样品。平均晶粒大小 D 可由谢乐 (Scherrer)公式确定[16-17]:

$$D = k\lambda / \beta \cos \theta, \qquad (1)$$

式中 k 为形成因子, 一般取值为 0.89, λ 为 X 射线波 长, 为 0.15406 nm, β 为衍射峰的半峰全宽, θ 为衍射 角。基于最大衍射峰(112)的半峰全宽, 不同 xPr 浓 度(x=0.1, 0.3, 0.5, 0.7%)掺杂的 CaWO4 荧光粉的 平均晶粒大小分别为: 17.6, 11.6, 16.9 和 12.7 nm。

3.2 样品的形貌

图 2 是用共沉淀法制备的典型 $Ca_{1-x}WO_4$: $xPr^{3+}(x=0.5\%)$ 的荧光粉扫描电镜照片,从图中 可以看出样品颗粒形貌较好,形状较规则,粉粒大小 约为 5~20 μ m。由于高温煅烧时,晶粒会再结晶和 聚合,因此,SEM 图片所得的实际粉粒大小与 XRD 计算的晶粒大小相比,要大得多。这些粉粒大小是符 合现有 LED 用一般荧光粉的粒径范围(1~100 μ m)。

图 2 Ca_{0.995} Pr_{0.005} WO₄ 的扫描电镜图片 Fig. 2 SEM image of Ca_{0.995} Pr_{0.005} WO₄

3.3 光谱测试

图 3 左边激发(EX)部分为 Ca_{1-x} WO₄: xPr³⁺ 在监测波长 $\lambda_{em} = 648$ nm 时测得的激发光谱。其 中,220 ~ 300 nm 宽谱带归因于 WO₄²⁻ 团簇内 的¹A₁ 基态向高能振动态¹T₂ 的电荷迁移跃迁 (CT)。另外三个为 Pr³⁺ 的特征激发跃迁,分别对 应于³H₄→³P₂(449 nm)、³H₄→³P₁(474 nm)和 ³H₄→³P₀(487 nm)的电子吸收。样品的激发光谱 表明,最强激发波峰位于 487 nm 处。

图 3 右边发射(EM)部分是 $Ca_{1-x}WO_4: xPr^{3+}$ 在蓝光 $\lambda_{ex} = 487$ nm 激发下的发射光谱, Pr^{3+} 的掺 杂量在 0.1~0.7%变化。500~700 nm 之间有多 个峰值,其中有 7 个较为明显。其发射光谱由一系 列锐谱组成, 分别位于 530 nm(³P₁→³H₅), 547 nm、

Fig. 3 Excitation (EX) and emission (EM) spectra of Ca_{1-x}WO₄:xPr³⁺(x=0.1%, 0.3%, 0.5%, 0.7%)
555 nm (³P₀→³H₅)、602 nm(¹D₂→³H₄)、618 nm、
637 nm(³P₀→³H₆)和 648 nm(³P₀→³F₂),最强发射
峰为648 nm。由图 3 可知,CaWO₄:Pr³⁺ 中 Pr³⁺ 的最佳掺杂量为 0.5%,此时发光强度达到最大。

由于发光色度是表征发光材料特性的一个基本 参数。图 4 为样品在蓝光区($\lambda_{em} = 487 \text{ nm}$)激发下 的国际照明委员会(CIE)色度图。结果表明,掺杂 Pr^{3+} 的 CaWO4 的色坐标为(x=0.39, y=0.55),与 主波长在 565 nm 左右的黄绿色坐标(x=0.40, y=0.54)接近,具有较高纯度的黄绿光。因此,该黄绿 色荧光粉可作为新一代 LED 的潜在应用材料,能有 效改善 LED 的显色性及使用性能。

图 4 $Ca_{0.995}$ WO₄:0.005Pr³⁺的 CIE 色坐标图 Fig. 4 CIE chromaticity coordinates of $Ca_{0.995}$ WO₄:0.005Pr³⁺

4 光谱的晶体场分析

稀土 Pr^{3+} 离子具有 $4f^2$ 电子组态, 替代 Ca^{2+} 晶 位后, 为 S_4 局域结构对称, 在晶体中其有效哈密顿 算符可写成^[18-20]

$$\begin{cases}
H_{\text{full}} = H_{\text{free ion}} + H_{\text{cf}}(B_q^k) \\
H_{\text{free ion}} = E_{\text{AVE}} + \sum_{k=2,4,6} F^k f_k + \zeta_{4f} A_{SO} + \alpha L(L+1) + \beta G(G_2) + \gamma G(R_7) + \sum_{k=0,2,4} m_k M^k + \sum_{k=2,4,6} p_k P^k,
\end{cases}$$
(22)

式中,对哈密顿量 H_{ful} 的贡献分别来自于自由离子 项 $H_{free ion}$ 和晶体场相互作用项 H_{ef} (与晶体场参数 B_q^k 相关)。自由离子项 $H_{free ion}$ 与自由离子的球谐部 分 E_{AVE} (对角化计算时此项的量可消去)、库仑相互 作用 F_k 、两体相互作用参数 α , β 和 γ 、自旋-轨道耦 合项(与自旋-轨道耦合系数 ζ_{4f} 相关)、相对论效应 项(包括自旋-自旋和自旋与其它轨道相互作用项, m_k 为有效算符, M^k 为 Marvin 积分)、两体有效算符 项(其中 p_f 为算符而 P^f 为参数) 有关。

在 S₄ 对称 晶 位, 晶 体 场 哈 密 顿 量 可 以 用

Wybourne 表示给出^[18-20],

$$H_{cf} = B_0^2 C_0^2 + B_0^4 C_0^4 + B_4^4 (C_{-4}^4 + C_4^4) + iI_m B_4^4 (C_{-4}^4 - C_4^4) + B_0^6 C_0^6 + B_4^6 (C_{-4}^6 + C_4^6) + iI_m B_4^6 (C_{-4}^6 - C_4^6),$$
(3)

式中 B_q^k 为晶场参量, C_q^k 为 4fⁿ 电子组态的 Racah 球 谐张量算符。对 4f 电子组态, k 取值为 2,4,6。q 的取 值取决于稀土离子在基质晶格中的位置对称,对 CaWO₄: Pr³⁺的 S₄ 晶位,q 的值为 0,-4,4。

表1 CaWO₄:Pr³⁺的理论与实验能级(cm⁻¹)

Level	Label	$E_{ m calc}$	$E_{ m expt}$	Error* / %	Level	Label	$E_{ m calc}$	$E_{ m expt}$	Error* / %
3 H $_{4}$	А	0	0	0	${}^3\mathrm{F}_4$	А	7013		
	Е	49				А	7164		
	А	96				А	7179		
	А	290				Е	7235		
	Е	375				А	7247		
	А	407			$^{1}\mathrm{G}_{4}$	А	10009		
	А	438				Е	10094		
3 H $_{5}$	А	2174				А	10164		
	Е	2191				А	10258		
	А	2210	2252	1.9		А	10366		
	А	2364				Е	10476		
	Е	2411				А	10486		
	А	2495			$^{1}\mathrm{D}_{2}$	А	16752	16611	0.9
	Е	2524	2516	0.3		Е	17113		
	А	2525				А	17613		
3 H $_{6}$	А	4329				А	17392		
	Е	4345	4353	0.2	${}^{3}\mathbf{P}_{0}$	А	20752	20534	1.1
	А	4382			$^{3}\mathrm{P}_{1}$	А	21207	21097	0.5
	А	4599				Е	21208		
	Е	4610			1 I ₆	А	21212		
	А	4623				А	21291		
	А	4709				E	21327		
	Е	4792				А	21584		
	А	4794				Е	21627		
	А	4813	4835	0.5		А	21674		
3 F ₂	А	5110	5102	0.2		А	21802		
	Е	5202				E	21921		
	А	5204				А	21926		
	А	5222				А	21932		
${}^{3}\mathrm{F}_{3}$	Е	6549			3 P ₂	А	22577	22272	1.4
	А	6555				А	22603		
	Е	6602				E	22618		
	А	6615				А	22633		
	А	6625			${}^{1}S_{0}$	А	46480		
${}^3\mathrm{F}_4$	А	6911							
	Е	6975							

Table 1 Calculated and experimental energy levels of CaWO4:Pr3+ (cm-1)

* $\mathrm{Error} = |E_{\mathrm{expt}} - E_{\mathrm{calc}}| / E_{\mathrm{expt}}$

对具有 $4f^2$ 电子组态的 Pr^{3+} 离子,有 13 个 J 的 多重态,分别为:³H₄、³H₅、³H₆、³F₂、³F₃、³F₄、¹G₄、 ${}^{1}D_{2}$ 、 ${}^{3}P_{0}$ 、 ${}^{3}P_{1}$ 、 ${}^{1}I_{6}$ 、 ${}^{3}P_{2}$ 和 ${}^{1}S_{0}$,在晶体场作用下,总共 可分裂为 91 个能级。从(2)和(3)式,可以建立 4f² 电子组态的 91×91 阶能量哈密顿量矩阵。 Pr^{3+} 离 子的 f-f 跃迁能级可以通过对角化这个能量哈密顿 量矩阵得到。而光谱(能级)的实验数据可从图 3 的 光谱跃迁中获得(见表 1),同时,根据实验光谱数 据,可确定库仑作用参量 $F_2 \approx 301 \text{ cm}^{-1}$, $F_4 \approx$ 46 cm⁻¹, $F_6 \approx 4.4$ cm⁻¹, 两体相互作用参量 $\alpha \approx$ 16.23 cm⁻¹, $\beta \approx -566.6$ cm⁻¹, $\gamma \approx 1371$ cm⁻¹, 自旋-轨道耦合系数 $\zeta_{4f} \approx 770 \text{ cm}^{-1}$ 。Marvin 积分参量 $M^{\circ} \approx$ 2.08 (0.3) cm⁻¹, $M^2 \approx 0.56 M^0$, $M^4 \approx 0.31 M^{0[20-21]}$, $P^2 \approx -88.6 \text{ cm}^{-1}$, $P^4 \approx 0.5P^2$, $P^6 \approx 0.1P^{2[20]}$ 。晶体 场参量作为拟合参数,通过拟合实验谱数据,可得: $B_{0}{}^{2} \approx -173 \ \mathrm{cm}^{-1}$, $B_{0}{}^{4} \approx 108 \ \mathrm{cm}^{-1}$, $B_{0}{}^{6} \approx$ 280 cm⁻¹, $B_4{}^4 \approx 1180$ cm⁻¹, $B_4{}^6 \approx -350$ cm⁻¹. (4)

计算所得结果与实验值对比列于表1。

5 结 论

通过共沉淀法成功制备了 CaWO₄: Pr³⁺ 黄绿 色荧光粉,研究了不同掺杂浓度的 CaWO₄: Pr³⁺ 黄 绿色荧光粉发光性能的差异。根据 XRD 分析可 知,成功合成了具有空间群为 I4₁/a 的四角白钨矿 结构的发光样品。SEM 检测表明,粉晶颗粒形貌较 好,颗粒形状较规则,粉粒大小约为 5~20 μ m。荧 光粉样品在蓝光区有很好的吸收,其中在 487 nm 激发最强,能有效地被蓝光 LED 激发;随着 Pr³⁺ 掺 杂浓度的增加,发光强度先增加后减小,摩尔分数超 过 0.5% Pr³⁺后,发生了浓度猝灭的现象。所制备 的样品能发出较高强度黄绿光,且样品 CaWO₄: Pr³⁺的掺杂浓度达 0.5%时发光强度最强。

CaWO₄:Pr³⁺理论计算结果与光谱实验值的相 对误差在 2%以下,理论结果与实验结果较好地吻 合,从而有效地解释了 CaWO₄:Pr³⁺的光谱能级,这 也表明在研究 Pr³⁺离子掺杂的荧光粉材料中,能量 矩阵的对角化方法是有效的。

参考文献

- 1 Zhang Xisheng, Yan Chunyu, Yao Chenzhong, et al.. Temperature properties of fluorescence spectra in Tm³⁺-doped LaOF and SiO₂ nanosystems [J]. Acta Optica Sinica, 2011, 31 (3): 0316004.
- 张喜生,晏春愉,姚陈忠,等. Tm³⁺掺杂的 LaOF 和 SiO₂ 纳米

体系中荧光光谱温度特性的研[J].光学学报,2011,31(3):0316004.

- 2 Cui Desheng, Guo Weiling, Cui Bifeng, et al.. Preparation and temperature-variation properties of high color rendering index LED [J]. Acta Optica Sinica, 2012, 32(1): 0123005. 崔德胜,郭伟玲,崔碧峰,等. 高显色白光 LED 的制备及其变温 特性[J]. 光学学报, 2012, 32(1): 0123005.
- 3 Lu Shenzhou, Yang Qiuhong, Xu Feng, *et al.*. Investigation of white light emitting diode based on Ce: YAG single crystal [J]. Acta Optica Sinica, 2012, 32(3): 0323001.
 陆神洲,杨秋红,徐 峰,等. 基于 Ce: YAG 单晶的白光发光二 极管性能研究[J]. 光学学报, 2012, 32(3): 0323001.
- 4 Bai Shengmao, Wang Jing, Miao Hongli, *et al.*. Luminescence properties of the Y_{3-x-y}Pr_xGd_yAl₅O₁₂:Ce³⁺ phosphors for white light emitting diodes [J]. Acta Optica Sinica, 2010, 30(5): 1402-1405.
- 白生茂, 王 晶, 苗洪利, 等. 用于白光 LED 的 Y_{3-x-y} Pr_xGd_yAl₅O₁₂:Ce³⁺荧光粉发光特性研究[J]. 光学学报, 2010, 30(5): 1402-1405.
- 5 Liang Feng, Hu Yihua, Chen Li, et al.. Energy transfer between WO4²⁻ groups and Eu³⁺ in CaWO4:Eu³⁺ phosphor [J]. Acta Physica Sinica, 2013, 62(18): 183302.
 梁 锋,胡义华,陈 丽,等. 荧光粉 CaWO4:Eu³⁺ 中 WO4²⁻ 与 Eu³⁺ 间的能量转递[J]. 物理学报, 2013, 62(18): 183302.
- 6 Meng Qingyu, Zhang Qing, Li Ming, et al.. Study of concentration dependence of luminescent properties for Eu³⁺ doped CaWO₄ red phosphors [J]. Acta Physica Sinica, 2012, 61 (10): 107804.
 孟庆裕,张庆,李明,等. Eu³⁺掺杂 CaWO₄ 红色荧光粉发

光性质的浓度依赖关系研究[J]. 物理学报, 2012, 61(10): 107804.

- 7 Liu Hongli, Hao Yuying, Xu Bingshe. Preparation and photoluminescence of LiSrBO₃: Eu³⁺ red-emitting phosphors for white leds [J]. Acta Physica Sinica, 2013, 62(10): 108504. 刘红利,郝玉英,许并社. 白光发光二级管用红色荧光粉 LiSrBO₃: Eu³⁺的制备与发光性能研究[J]. 物理学报, 2013, 62 (10): 108504.
- 8 Cui Zhiguang, Ye Renguang, Deng Degang, et al.. Optical properties of Eu²⁺-Dy³⁺ co-doped SrSiO₃ transparent glass ceramics [J]. Acta Optica Sinica, 2012, 32(2): 0216001. 崔志广,叶仁广,邓德刚,等. Eu²⁺/Dy³⁺共掺 SrSiO₃ 透明微晶 玻璃的光学性质[J]. 光学学报, 2012, 32(2): 0216001.
- 9 Cheng Lihong, Zhong Haiyang, Sun Jiashi, *et al.*. Solid state reaction synthesis and spectroscopic properties of Gd₂ (MoO₄)₃: Tb³⁺ phosphor [J]. Chin J Lumin, 2011, 32(12): 1238-1242. 程丽红,仲海洋,孙佳石,等. Gd₂(MoO₄)₃:Tb³⁺荧光粉的固相 合成与光谱性质[J]. 发光学报, 2011, 32(12): 1238-1242.
- 10 W L Feng, Y Jin, Y Wu, *et al.*. Co-precipitation synthesis and photoluminescence properties of Ba_{1-x} MoO₄ : xEu³⁺ red phosphors [J]. J Lumin, 2013, 134: 614-617.
- 11 S Mahlik, M Behrendt, M Grinberg, *et al.*. Pressure effects on the luminescence properties of CaWO₄ : Pr³⁺ [J]. Opt Mater, 2012, 34(12): 2012-2016.
- 12 Li Min, Shen Bin, Zhu Xiangren, *et al.*. Effect of activator Pr₂O₃ on the luminescent properties of CaWO₄[J]. Rare Metal Mater Engin, 2008, 37(S1): 281-284.
 李 敏,沈 斌,朱相任,等.激活剂 Pr₂O₃ 对 CaWO₄ 发光性能的影响[J]. 稀有金属材料与工程, 2008, 37(S1): 281-284.
- 13 J Ninkovic, G Angloher, C Bucci, *et al.*, CaWO₄ crystal as scintillators for cryogenic dark matter search [J]. Nucl Instr Met A, 2005,537(1-2): 339-347.
- 14 G Angloher, C Bucci, G Angloher, *et al.*. Limits on WIMP dark matter using scintillating CaWO₄ cryogenic detectors with active background suppression [J]. Astropart Phys, 2005, 23: 325-339.

- 15 M Kay, B Frazer, I Almodovar. Neutron diffraction refinement of CaWO₄[J]. J Chem Phys, 1964, 40(2): 504-506.
- 16 W L Feng. Preparation and luminescent properties of green SrAl₂O₄:Eu²⁺ and blue SrAl₂O₄:Eu²⁺, Gd³⁺ phosphors [J]. Mater Lett, 2013, 110: 91-93.
- 17 F Lei, B Yan. Hydrothermal synthesis and luminescence of CaMO₄:RE³⁺ (M=W, Mo; RE=Eu, Tb) submicro-phosphors [J]. J Solid State Chem, 2008, 181(4): 855-862.
- 18 B G Wybourne. Spectroscopic Properties of Rare Earths [M]. New York: Wiley, 1965.
- 19 K A Gschneidner, Jr, L Eyring. Handbook of the Physics and Chemistry of Rare Earths [M]. Amsterdam: Elsevier, 1996, 23.
- 20 G K Liu, B Jacquier. Spectroscopic Properties of Rare Earths in Optical Materials [M]. Springer, 2005.
- 21 M Karbowiak, C Rudowicz, P Gnutek. Energy levels and crystal-field parameters for Pr³⁺ and Nd³⁺ ions in rare earth (RE) tellurium oxides RE₂Te₄O₁₁ revisited-ascent/descent in symmetry method applied for triclinic site symmetry [J]. Opt Mater, 2011, 33(8): 1147-1161.

栏目编辑:李志兰